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Abstract: An accurate estimation of evapotranspiration (ET) from crops is crucial in irrigation
management, crop yield assessment, and optimal allocation of water resources, particularly in
arid regions. This study explores the estimation of seasonal evapotranspiration for crops using
multisource remote sensing images. The proposed estimation framework starts with estimating
daily evapotranspiration (ETd) values, which are then used to calculate ET estimates during the crop
growing season (ETs). We incorporated Landsat images into the surface energy balance algorithm over
land (SEBAL) model, and we used the trapezoidal and sinusoidal methods to estimate the seasonal
ET. The trapezoidal method used multitemporal ETd images, while the sinusoidal method employs
time-series Moderate Resolution Imaging Spectroradiometer (MODIS) images and multitemporal
ETd images. Experiments were implemented in the agricultural lands of the Kai-Kong River Basin,
Xinjiang, China. The experimental results show that the obtained ETd estimates using the SEBAL
model are comparable with those from the Penman–Monteith method. The ETs obtained using
the trapezoidal and sinusoidal methods both have a relatively high spatial resolution of 30 m.
The sinusoidal method performs better than the trapezoidal method when using low temporal
resolution Landsat images. We observed that the omission of Landsat images during the middle stage
of crop growth has the greatest impact on the estimation results of ETs using the sinusoidal method.
Based on the results of the study, we conclude that the proposed sinusoidal method, with integrated
multisource remote sensing images, offers a useful tool in estimating seasonal evapotranspiration for
crops in arid regions.

Keywords: evapotranspiration; SEBAL; multisource remote sensing; trapezoidal method;
sinusoidal method

1. Introduction

Water is an essential resource, especially for agriculture in arid and semiarid regions [1,2]. One vital
component to describe the hydrological cycle in ecological systems and to estimate water balance is
evapotranspiration (ET). ET is the process by which water is transported from the earth’s surface to the
atmosphere by the evaporation from surfaces (soils and wet vegetation) and by the transpiration from
plants through the stomata present in the plant leaves [3,4]. Crop evapotranspiration is a fundamental
variable in the hydrological cycle and is thus significant for the management of irrigation and water
resources [5]. However, accurately assessing ET for crops is challenging because of its high spatial and
temporal variability.

Many studies have been conducted to estimate ET using methods such as sap flow [6],
lysimeters [7,8], the Bowen ratio [9], and eddy covariance [10,11]. These traditional methods rely on
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field surveys and are limited to small areas. For larger areas, directly applying traditional approaches is
often difficult due to the complexity of hydrological processes and land surface factors. An observation
network is generally required to measure ET for vast regions, which is labor-intensive and costly.
In recent years, numerous approaches have been developed that allow for the dynamic estimation
of ET using satellite images [12]. Remote sensing has been considered as an effective means to
obtain ET over various spatial and temporal scales [13–19]. In the literature, increasing attention
has been given towards the estimation of ET using remote sensing technology [20–22]. Several
ET products and models have been proposed (e.g., ETMonitor with a spatial resolution of 1 km
and a temporal resolution of one day [23–25], Moderate Resolution Imaging Spectroradiometer
(MODIS) MOD16 with 1 km/8 day [26–28], EUMETSAT Satellite Application Facility on Land Surface
Analysis (LSA-SAF) MSG ET with 5 km/30 min [29], Global Land Evaporation Amsterdam Model
(GLEAM) with 25 km/1 day [30–32], and FLUXCOM with 50 km/1 month [33]). References [34–36]
reviewed the available methods for ET estimation based on different structural complexities, theories,
and assumptions. These methods can be grouped into four categories: (1) empirical methods using
statistically-derived relationships between ET and vegetation indices; (2) residual surface energy balance
models, such as single and dual-source models, the Surface Energy Balance System (SEBS) [37], Surface
Energy Balance Index (SEBI) [38], and the surface energy balance algorithm over land (SEBAL) [39];
(3) physically-based methods based on the Penman–Monteith (PM) [40,41] and Priestley–Taylor
(PT) [42] equations; and (4) data assimilation methods with heat diffusion equation and radiometric
surface temperature sequences. The spatial resolution of remote sensing images affects the accuracy of
ET estimates. Since most ET products offer a coarse spatial resolution at either the national, continental,
or global scales, the accuracy of their estimates is significantly constrained [27]. In order to improve
the accuracy of ET estimates, new approaches would have to be developed that utilize remote sensing
images with a high spatial resolution at a regional scale.

Among existing models, SEBAL is one of the most widely used models for arid and semiarid
regions because of its flexibility in different vegetation types and climatic characteristics and its strong
physical foundation. The applicability of the SEBAL model has been evaluated in many different
regions. For example, the SEBAL model has been used to estimate ET in various studies areas in
China, India, Spain, and Pakistan, and results have shown that the accuracy of estimated ET is
about 85% compatible with the field measurements without calibration [39,43]. Researchers have
conducted studies estimating ET with the SEBAL model by using Landsat [44–47] and MODIS satellite
images [48,49]. Compared with lysimetric measurements, eddy correlation, and Penman–Monteith
methods, the ET estimated by incorporating the Landsat images into the SEBAL model performed
better than when incorporating the MODIS images. An existing study showed that Landsat ET can
be better than MODIS ET due to its high spatial resolution [50]. Most of the SEBAL-related studies
estimated ET on a daily scale; few studies have estimated ET for crops using Landsat remote sensing
images during the growing season. Linear and spline interpolation are the most popular methods
to estimate seasonal ET (ETs) in existing studies [51–53]. The ET, however, does not change linearly
with time during the crop growing season. A possible practice to improve the estimation of ETs is to
combine the change curve of ET with time. In addition, an alternative is to derive monthly ET based on
the monthly average crop coefficient, for which the ETs can be obtained using the monthly ET [54,55],
but this strategy is data-intensive. The estimation of evapotranspiration for crops during the growing
season is essential for scientific irrigation. Therefore, it is necessary to explore more effective methods
to estimate the ETs for crops.

This study aims to develop more efficient methods to estimate seasonal evapotranspiration for
crops with a relatively high spatial resolution and only based upon multisource remote sensing images
within one year. We propose a trapezoidal method and a sinusoidal method to achieve this objective.
The novelty and innovation of this study are as follows:

(1) The SEBAL model is used to obtain ETd for crops in arid regions from Landsat images;
(2) A trapezoidal method is employed to extend ETd to ETs using multitemporal ETd data; and,
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(3) A sinusoidal method is proposed to derive ETs from ETd using multisource remote sensing images.

The remainder of this paper is structured as follows. Section 2 describes the study area and
datasets. Section 3 discusses the proposed methodology for ETd and ETs estimation. Section 4 presents
the experimental results, followed by the discussion and conclusions in Sections 5 and 6, respectively.

2. Study Area and Data

2.1. Study Area

The agricultural land of the Kai-Kong River Basin in Xinjiang, China, was selected as the study
area (Figure 1). Located in Northwestern China, Xinjiang is characterized as having an extreme arid
climate [56] and is considered as an important region for crop production. The agricultural lands of
the Kai-Kong River Basin are important planting regions for crops in Xinjiang. The Kai-Kong River
Basin is located at 40◦48′–43◦20′N and 82◦56′–88◦12′E, covering an area of around 5.7 × 104 km2.
It includes the Kaidu River Basin in the upstream and the Kongque River Basin in the downstream.
The terrain is characterized as rugged in the northwest and flat in the southeast, and the altitude
ranges from 600 to 4800 m [57]. Figure 1 shows the agricultural land of the Kai-Kong River Basin,
which is delineated by a red line. The area includes 1.02 × 103 km2 agricultural lands of Bosten
Lake, 2.46 × 103 km2 agricultural lands of the Kaidu River, and 2.79 × 103 km2 agricultural lands of
the Kongque River [58]. The study area is characterized by an arid continental climate with a long
sunshine time, a large temperature difference between day and night, frequent climate fluctuations,
sparse rainfall, and severe evaporation. The precipitation in this area is concentrated from April to July,
with maximum precipitation at 20–40 mm. The agricultural land of the Kai-Kong River Basin provides
a representative area for research on crop evapotranspiration in arid regions. The major crops in the
study area are wheat, corn, cotton, chili, and pear, and the cropping period runs from March to October.
The cropping system is one crop per annum, and the crop phenology includes the following: wheat
and pear are cultivated and turn green in mid-March and mature in July and October; chili is planted
in mid-April and harvested in late September; corn and cotton emerge in early May and mature in
September and October.
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Figure 1. Overview of the study area. The location of the Kai-Kong River Basin in Xinjiang is highlighted
shown in the left picture (a), and the agricultural land in the Kai-Kong River Basin is surrounded by
the red boundary in the right picture (b).

2.2. Study Data

Three kinds of data were used in this study: remote sensing images, meteorological data,
and ancillary data. Remote sensing data include Landsat and MODIS images acquired in 2016.
The Landsat images were obtained from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and
Landsat-8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) (Path = 143, Row = 31).
In total, we collected 13 cloud-free multitemporal Landsat images during the 2016 cropping season with a
level correction 1T (terrain corrected) from the USGS Earth Explorer site (https://earthexplorer.usgs.gov/).

https://earthexplorer.usgs.gov/
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The spatial resolution of visible bands is 30 m, and the spatial resolution of the thermal infrared bands
of Landsat 7 ETM+ and Landsat-8 OLI/TIRS is 60 and 100 m, respectively. Details of the Landsat
images are presented in Table 1. The Landsat images were preprocessed by applying radiometric
calibration, atmospheric correction, and clipping. Due to the banding phenomenon caused by the
failure of the satellite scan line corrector for the Landsat 7 ETM+ images acquired after 31 May 2003,
stripping processing was required for Landsat 7 ETM+ images. For the MODIS data, we downloaded
46 time-series MOD16A2 images, with the spatial and temporal resolutions of 500 m over 8 days, for
2016 from the NASA Earth Data site (http://earthdata.nasa.gov). We preprocessed the MODIS data
by applying project transformation (sinusoidal projection to UTM_Zone_45N), format conversion
(HDF to TIF), band extraction (ET band), real value calculation (valid_data × scale_factor), image
clipping, and S-G filtering [59,60]. For the digital elevation model (DEM), we downloaded 18
ASTER Global Digital Elevation Model 2 (ASTGTM2) images with 30 m resolution from the website
(http://www.gscloud.cn/), whose processing consisted of image mosaic and clipping operations.

For the meteorological dataset, we obtained data for wind speed, air temperature, average air
pressure, precipitation, air humidity (vapor pressure or dew point temperature), solar radiation,
and meteorological station characteristics (height of wind measurement and vegetation height).
The daily meteorological dataset was downloaded from the China Meteorological Data Sharing Service
Network (http://data.cma.cn/). Ancillary data, which include crop sample points, planting structure,
and phenology information, were also collected for the study. A detailed description of these data can
be found in our previous study [61].

Table 1. Details of the collected Landsat images.

Date DOY Satellite and Sensors

6 April 97 Landsat 7 ETM+
14 April 105 Landsat-8 OLI/TIRS
22 April 113 Landsat 7 ETM+
16 May 137 Landsat-8 OLI/TIRS
1 June 153 Landsat-8 OLI/TIRS

25 June 177 Landsat 7 ETM+
27 July 209 Landsat 7 ETM+

4 August 217 Landsat-8 OLI/TIRS
5 September 249 Landsat-8 OLI/TIRS

21 September 265 Landsat-8 OLI/TIRS
7 October 281 Landsat-8 OLI/TIRS
15 October 289 Landsat-8 OLI/TIRS
31 October 305 Landsat-8 OLI/TIRS

3. Methods

The proposed framework for ETs estimation is shown in Figure 2. The SEBAL model was applied
to obtain instantaneous evapotranspiration values (ETinst) using multitemporal Landsat images,
meteorological data, and DEM data, which were then converted into ETd. A trapezoidal method and a
sinusoidal method were then used to upscale the ETd to the ETs. The trapezoidal method estimates
ETs based only on the multitemporal ETd images derived by SEBAL, while the sinusoidal method
estimates ETs using multisource remote sensing images. For the trapezoidal method, the formula
for the trapezoidal area was applied to estimate ETs for crops. For the sinusoidal method, we used
time-series MOD16A2 images to obtain the change in the crops’ ET between phenological dates
(day of year, DOY). Multitemporal ETd images were then used to calculate the ETs for crops.

http://earthdata.nasa.gov
http://www.gscloud.cn/
http://data.cma.cn/
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3.1. ETd Estimation Based on the SEBAL Model

SEBAL is a flux algorithm based on a complete radiation and energy balance, along with resistances
for momentum, heat, and water vapor transport for every pixel [62,63]. It estimates ET through a
simplified land surface energy balance method. When using SEBAL, the values for albedo, normalized
difference vegetation index (NDVI), land surface temperature (TS), and emissivity from Landsat images
are calculated first. Together with meteorological and DEM data, these values are used to estimate key
variables in the energy balance equation, including net radiation flux (Rn), soil heat flux (G), and the
sensible heat flux (H). We can obtain the latent heat flux (LE) as a residual using the equation:

LE = Rn − G − H. (1)

Based on the latent heat flux (LE), the instantaneous evapotranspiration (ETinst) is defined as
follows [64–66]:

ETinst= 3600 ×
LE
λ

(2)
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λ = ( 2.501 − 0.002361 × (T s − 273.16) ) × 106 (3)

where λ indicates the latent evaporation heat. Previous studies have shown the effectiveness of the
sine method to convert ETinst to ETd using this expression [67,68]:

ETd =
ETinst × 2N

π × sin(π × t/N)
(4)

where N is the number of daily ET hours, and t is the time interval between sunrise and data-collecting
time of the Landsat satellite. This equation is inspired by the ETinst change curve on a clear day, which
closely conforms to a sine relation. In this paper, we use the same method to convert ETinst into ETd.

3.2. Validation of the SEBAL Algorithm Performance

We used the Penman–Monteith (PM) model proposed by the Food and Agriculture Organization
(FAO) in 1998 [69] to verify the accuracy of the ETd obtained by the SEBAL model. The actual
evapotranspiration (ETc, mm·day−1) of the crops is calculated using the formula:

ETc = Kc× ET0 (5)

where Kc is the crop coefficient, and ET0 is the reference evapotranspiration (mm·day−1). The ETc

obtained by the PM model has generally been used to verify the accuracy of ETd estimated by other
models [3,70], which is why the PM model was selected to validate the results of this study.

3.3. ETs Estimation Based on the Trapezoidal Method

We propose a trapezoidal method to estimate the ET of crops using multitemporal ETd images
derived by SEBAL. Suppose that multitemporal Landsat images are acquired during the crop growing
season. Let Dm, m ∈ {1, . . . , n}, be the acquired time (DOY) of the mth Landsat image, and n is the total
number of the acquired images. Let ETk be the ETd estimated at different periods, ETm as the ETd of
Landsat image on the mth period, and ∆d as the time difference between adjacent images. The ETd

change curves with the DOY of crops during the growing season are shown in Figure 3. The blue
trapezoid area in Figure 3 is bounded by the ETd curve of crop 1 between two adjacent dates Dm

and Dm+1. The default value of ET0 is 0, and the area of the trapezoid is then (ETm+ETm+1) × ∆dm/2.
The calculated area is regarded as the cumulative ET for Dm to Dm+1. To obtain the ETs, the areas
of all trapezoids during the crop growing season were aggregated for the crops. The formula of the
trapezoidal method is given in Equation (6), as follows:

ETs =
n − 1∑
m=1

(ET m +ETm+1) × ∆dm

2
. (6)

According to the definition, the estimation accuracy of the trapezoidal method is dependent on
the intensity of the ETd time-series. Th e ETs can be derived with a high estimation accuracy when a
sufficient number of Landsat images is used.



Remote Sens. 2020, 12, 2398 7 of 20

Remote Sens. 2020, 12, x FOR PEER REVIEW  6 of 20 

 

 λ = ( 2.501 - 0.002361 × (Ts - 273.16) ) × 106 (3) 

where λ indicates the latent evaporation heat. Previous studies have shown the effectiveness of the 
sine method to convert ETinst to ETd using this expression [67,68]: 

 ETd = ETinst × 2N
π × sin (π × t/N) (4) 

where N is the number of daily ET hours, and t is the time interval between sunrise and data-
collecting time of the Landsat satellite. This equation is inspired by the ETinst change curve on a clear 
day, which closely conforms to a sine relation. In this paper, we use the same method to convert ETinst 
into ETd. 

3.2. Validation of the SEBAL Algorithm Performance 

We used the Penman–Monteith (PM) model proposed by the Food and Agriculture 
Organization (FAO) in 1998 [69] to verify the accuracy of the ETd obtained by the SEBAL model. The 
actual evapotranspiration (ETc, mm·day−1) of the crops is calculated using the formula: 

  
 

ETc = Kc× ET0 (5) 

where Kc is the crop coefficient, and ET0 is the reference evapotranspiration (mm·day−1). The ETc 
obtained by the PM model has generally been used to verify the accuracy of ETd estimated by other 
models [3,70], which is why the PM model was selected to validate the results of this study. 

3.3. ETs Estimation Based on the Trapezoidal Method 

We propose a trapezoidal method to estimate the ET of crops using multitemporal ETd images 
derived by SEBAL. Suppose that multitemporal Landsat images are acquired during the crop 
growing season. Let Dm, 𝑚 ∈ {1, … , 𝑛}, be the acquired time (DOY) of the mth Landsat image, and n 
is the total number of the acquired images. Let ETk be the ETd estimated at different periods, ETm as 
the ETd of Landsat image on the mth period, and ∆𝑑 as the time difference between adjacent images. 
The ETd change curves with the DOY of crops during the growing season are shown in Figure 3. The 
blue trapezoid area in Figure 3 is bounded by the ETd curve of crop 1 between two adjacent dates Dm 
and Dm+1. The default value of ET0 is 0, and the area of the trapezoid is then (ETm+ETm+1) × Δdm /2. The 
calculated area is regarded as the cumulative ET for Dm to Dm+1. To obtain the ETs, the areas of all 
trapezoids during the crop growing season were aggregated for the crops. The formula of the 
trapezoidal method is given in Equation (6), as follows:  

 
Figure 3. Daily evapotranspiration (ETd) change curves with the DOY (day of the year) of crops during 
the growing season. The horizontal axis represents the acquired time (day of the year, DOY) of 
Landsat images and the vertical axis represents the ETd. 

Figure 3. Daily evapotranspiration (ETd) change curves with the DOY (day of the year) of crops during
the growing season. The horizontal axis represents the acquired time (day of the year, DOY) of Landsat
images and the vertical axis represents the ETd.

3.4. ETs Estimation Based on the Sinusoidal Method

Acquiring over 15 Landsat images with satisfactory quality for a specific area within a year is
usually difficult due to low temporal resolution and meteorological factors, such as cloud and rain.
To deal with this problem, we propose a new method to estimate the ET of crops during the growing
season using multisource remote sensing images. MOD16A2 images have high temporal resolution,
i.e., eight days, and can reflect the change of crop ET during the year and crop growing season, while
Landsat images have a relatively high spatial resolution, i.e., 30 m, and can estimate ET at a finer level.
The proposed method, referred to as the sinusoidal method in this paper, estimates the ETs of crops
using time-series MOD16A2 images and the ETd images produced by SEBAL. The workflow of the
sinusoidal method is shown in Figure 4.
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We first randomly selected ten sample points from each crop as the training points and the
remaining sample points as testing points. We used the training points to extract the ET from
46 time-series MOD16A2 images and obtain the ET change curve of the five main crops, which
intuitively, is similar to the shape of a trigonometric curve. Based on the conversion method (ETinst

to ETd) discussed in Section 3.1, we assumed that the ETd change meets the form of a sine function
(Equation (7)) within a year and is given by the expression:

y = y0+A × sin(
x − xc

w
× π) (7)

where y is the ETd of crops, and x represents the image acquisition date (DOY). The coefficients y0, A,
xc, and w were then determined by the time-series ETd for every pixel. To verify our assumption, we
used the testing points to extract the ET from 46 time-series (MOD16A2) images and obtained the ET
values for the five crops. We applied the sine function (Equation (7)) to the ET data and obtained the
y0, A, xc, w, and the coefficient of determination (R2) for each crop. If the R2

∈ [0.60, 1], we considered
that the pattern of the change of the ETd can be formulated as a sine function. We then applied the sine
function form to the multitemporal ETd images and obtained the fitted sine function for each pixel at
the same coordinate. Finally, we integrated the fitted sine function to obtain ETs for each pixel and
acquired the distribution of ETs by calculating every pixel in the multitemporal ETd images.

4. Results

4.1. Temporal-Spatial Variation of ETinst and ETd Obtained by the SEBAL Model

We used the SEBAL model to obtain ETinst and ETd using Landsat images (Figure 5). The figure
shows high consistency for both the ETinst and ETd, ranging between 0–1.20 mm·h−1 and 0–8.00 mm·d−1,
respectively. We then used sample points for the five main crops to extract the ET from the ETd images,
and we obtained the change curve of ETd, as shown in Figure 6.
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Figure 6. The change curves of ETd at a given DOY for five main crops.

Based on the phenological information of the five main crops in the study area, we divided the
DOY into three stages: the initial stage of growth from 97 to 137, the middle stage from 137 to 249,
and the late stage from 249 to 305. In Figure 5, the ETinst and ETd values gradually increased with the
growth of crops in the initial stage and reached their peaks in the middle stage. The range of the ETinst

and ETd values are similar to that in the initial stage but gradually decreased at the late stage. Based
on the crop planting structure in the study area, the high ETinst and ETd values were concentrated in
the pear fields, while the low values were concentrated in the cotton fields. Wheat was the first to be
planted and the earliest to mature. The ETd associated with wheat started to increase on DOY 79 and
began to decrease on DOY 177 (see Figure 6). Pear had the longest growing period, which was sown
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the earliest and was the last to mature. The ETd of pear started to increase on DOY 97 and had the
slowest rate of decrease among the five main crops. Chili was sown after wheat and pear, which was
then followed by corn and cotton. The ETd of chili started to increase on DOY 105 while the ETd of
corn and cotton started to rise on DOY 113.

4.2. Accuracy Assessment of ETd Obtained by the SEBAL Model

In this study, we referred to existing studies to obtain the crop coefficients of cotton for accuracy
assessment because of the difficulty in the acquisition of field data of Kc. Cotton is the most widely
planted crop in Xinjiang. Most of the related studies focused on cotton but few on the derivation
of crop coefficients for other crops. It is therefore hard to obtain the validation data of other crops
for the accuracy assessment. Here, we referred to the Kc of cotton from related studies and used the
FAO model to verify the accuracy of ETd derived from the SEBAL model. We estimated ETc using
meteorological data and the crop coefficient (Kc) for cotton, where the Kc of cotton was provided by [71].
The estimation accuracy of the SEBAL model is defined as 1-(|ETc-ETd|/ETc). Accuracy verification for
cotton’s ETd was obtained using the SEBAL model, as summarized in Table 2. This table shows that the
difference between the ETd obtained using the SEBAL model and the actual evapotranspiration (ETc)
derived using the PM model was within one mm·day−1, and the accuracy of ETd was more than 80%.

Table 2. Accuracy of ETd estimated by the SEBAL model.

Date ETd (mm/day) ET0 (mm/day) Kc ETc (mm/day) Difference (mm/day) Accuracy

22 April 1.28 4.38 0.26 1.14 −0.14 0.88
27 July 5.14 5.01 1.20 6.01 0.87 0.86

15 October 1.52 2.46 0.70 1.72 0.20 0.88

4.3. Validation Results of the Sinusoidal Method

We used the testing points to extract the ET from 46 time-series MOD16A2 images and obtain
the ET values for the five main crops. We also used the MOD16A2 images covering the crop growing
season to extract the ET values during the crop growth period based on crop phenology. We then
applied the sine function (Equation (7)) to obtain the ET change curves for the entire year (Figure 7a)
and the growing season (Figure 7b). The function fitting formula and the coefficient of determination
(R2) for each crop are shown in Table 3.

Table 3. Function fitting formula and the coefficient of determination.

Crop Type
During the Interannual During Crop Growing Season

Fitting Formula R2 Fitting Formula R2

Wheat y = 7.80+4.87 × sin( x − 124.33
116.23 × π) 0.81 y = 8.15+6.56 × sin( x − 132.25

105.65 × π) 0.92

Corn y = 7.40+4.63 × sin( x+95.31
115.45 × π) 0.81 y = 4.96+7.98 × sin( x+152.72

140.21 × π) 0.94

Cotton y = 4.70+4.07 × sin( x − 175.13
142.15 × π) 0.65 y = 4.51+4.00 × sin( x+30.89

106.25 × π) 0.75

Chili y = 9.23+6.52 × sin( x − 136.82
138.87 × π) 0.85 y = 11.00+10.22 × sin( x+40.94

97.65 × π) 0.86

Pear y = 9.47+7.80 × sin( x − 138.37
124.36 × π) 0.82 y = 8.09+7.76 × sin( x − 135.54

146.59 × π) 0.84

The results show that the coefficients of determination (R2) for the main crops during the entire
year are greater than 0.80, while the R2 values of the fitting functions during the crop growing season
were over 0.85 except for cotton in both cases. The sinusoidal function of cotton had low fitting
accuracy, and the shape of the fitted curve was different from other crops. This is mainly due to some
missing pixels in the cotton region of the MODIS images, which resulted from the low image quality.
When using the sample points of cotton to extract ET values from the time-series MOD16A2 images,
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there were about 47% null values in the missing pixels. These missing pixels may affect the accuracy of
function fitting for cotton.
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4.4. Distribution of ET during Crop Growing Season

The use of the trapezoidal method in estimating ETs is dependent on the date of acquisition (DOY)
of the Landsat images and requires that the estimation interval is discrete. In contrast, the sinusoidal
method is not constrained by the image acquisition date and has the advantage of continuous estimation
interval. In this study, we designed three experiments to test the estimation results using the trapezoidal
and sinusoidal methods. To estimate the ETs for five main crops, we used the ETd images covering
the growth period of each crop to estimate the ETs based on their different phenological information.
In Experiments A and B, the estimation intervals were set up using similar acquisition dates and crop



Remote Sens. 2020, 12, 2398 12 of 20

phenology to compare the ETs results using the two methods. The discrete estimation intervals (DOY)
of the trapezoidal method were set as follows: wheat (97, 105, 113, 137, 153, 177, 209, 217, 249, 265,
281), corn (113, 137, 153, 177, 209, 217, 249, 265, 281), cotton (113, 137, 153, 177, 209, 217, 249, 265,
281, 289, 305), chili (105, 113, 137, 153, 177, 209, 217, 249, 265, 281), and pear (97, 105, 113, 137, 153,
177, 209, 217, 249, 265, 281, 289, 305). The distribution of ETs by the trapezoidal method is shown in
Figure 8a. For the sinusoidal method, the continuous estimation intervals were set as follows: wheat
(97,281) corn (113,281) cotton (113,305) chili (105,281) and pear (97,305) The spatial distribution of ETs

is shown in Figure 8b. In Experiment C, we changed the estimation intervals from Experiment B based
on the growth period mentioned in Section 4.3. This was to evaluate the influence of the estimation
interval on the ETs estimates from the sinusoidal method. The estimation intervals were set as follows:
wheat (81,281) corn (121,281), cotton (121,313) chili (105,281) and pear (81,313) The distribution of
ETs is shown in Figure 8c. The calculation process of ETs was implemented through Interactive Data
Language (IDL) programming, and the frequency distribution of ETs is shown in Figure 9.
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The distribution shape of the ETs obtained by the trapezoidal method was consistent with that of
the sinusoidal method, as shown in Figures 8 and 9. In both methods, ETs values in pear fields were
found with relatively high values, mainly because it had the longest growing period. There were some
noticeable differences between the ETs obtained from the trapezoidal and sinusoidal methods. Under
the same estimation intervals, the ETs estimates from the trapezoidal method are higher than that
of the sinusoidal method, as presented in Figure 8a,b. Based on the results of Experiments B and C,
the ETs estimates change when the estimation intervals are modified. When estimation intervals are
set based on the crop phenology, more accurate ETs estimates can be obtained.

4.5. ET of Five Main Crops during the Growing Season

Figure 10 presents the box plots of ETs values for wheat, corn, cotton, chili, and pear, while
the average ETs for the five crops are shown in Table 4. The results show pear had the highest
evapotranspiration during the growing season, followed by chili. The ETs of wheat, corn, and cotton
were found to be similar. Under the same estimation interval, the ETs estimates derived using the
trapezoidal method were higher than those obtained using the sinusoidal method. Comparing the
average ETs values from Experiments B and C, the change in the estimation interval resulted in different
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ETs estimates using the sinusoidal method. For wheat, the estimation interval expanded from (97,281)
in Experiment B to (81,281) in Experiment C, and its average ETs increased from 634.57 to 660.18 mm.
Similarly, the estimation interval for pear was extended from (97,305) to (81,313), and its average ETs

increased from 891 to 943.81 mm. For corn, the contraction of the estimation interval by eight days,
from (113,281) to (121,281), caused a slight decrease in the average ETs from 645.53 to 641.43 mm.
For chili, the estimation interval in Experiments B and C was identical, and the average ETs were
almost the same.

Remote Sens. 2020, 12, x FOR PEER REVIEW  13 of 20 

 

Figure 10 presents the box plots of ETs values for wheat, corn, cotton, chili, and pear, while the 
average ETs for the five crops are shown in Table 4. The results show pear had the highest 
evapotranspiration during the growing season, followed by chili. The ETs of wheat, corn, and cotton 
were found to be similar. Under the same estimation interval, the ETs estimates derived using the 
trapezoidal method were higher than those obtained using the sinusoidal method. Comparing the 
average ETs values from Experiments B and C, the change in the estimation interval resulted in 
different ETs estimates using the sinusoidal method. For wheat, the estimation interval expanded 
from (97,281) in Experiment B to (81,281) in Experiment C, and its average ETs increased from 634.57 
to 660.18 mm. Similarly, the estimation interval for pear was extended from (97,305) to (81,313), and 
its average ETs increased from 891 to 943.81 mm. For corn, the contraction of the estimation interval 
by eight days, from (113,281) to (121,281), caused a slight decrease in the average ETs from 645.53 to 
641.43 mm. For chili, the estimation interval in Experiments B and C was identical, and the average 
ETs were almost the same. 

 
Figure 10. ET of five main crops during the growing season. (a), (b), and (c) refer to the three 
experiments A, B, and C, respectively. 

Table 4. The average ETs of five main crops. 

Crop type 
Average ETs (mm) 

a b c a-b a-c c-b 

Wheat 736.63 634.57 660.18 102.06 76.45 25.61 

Corn 668.18 645.53 641.43 22.65 26.75 −4.10 

Cotton 725.18 638.52 690.61 86.66 34.57 52.09 

Chili 800.33 753.29 755.08 47.04 45.25 1.79 

Pear 956.37 891.00 943.81 65.37 12.56 52.81 

4.6. Performance of the Proposed Methods for Different Acquisition Frequency of Landsat Images 

Obtaining time-intensive Landsat images is often challenging for areas with high precipitation 
and frequent cloud cover. To explore the impact of missing images at various stages of growth on the 
accuracy of ETs estimates, the trapezoidal and sinusoidal methods proposed in this paper were used 
to estimate ETs using different combinations of multitemporal Landsat images. The experimental 
design is shown in Table 5. 

Three sets of experiments were implemented: (1) the early stage of crop growth was excluded 
(DOY: 97, 105, 113, 137); (2) the middle stage of crop growth was excluded (DOY: 153, 177, 209, 217); 
and (3) the final stage of growth was excluded (DOY: 249, 265, 281, 289). We set the intersection of 
the estimation interval in Section 4.4 Experiment A and the involved images in each test as the 
estimation interval for each crop because the estimation interval is discrete for the trapezoidal method. 
Taking the wheat in Test 1 as an example, the discrete estimation interval (DOY) of wheat in Section 
4.4 Experiment A is (97, 105, 113, 137, 153, 177, 209, 217, 249, 265, 281), images involved in Test 1 are 
(DOY: 153, 177, 209, 217, 249, 265, 281), and the intersection of the two datasets is (DOY: 153, 177, 209, 
217, 249, 265, 281). Then, we set the estimation interval of wheat as (DOY: 153, 177, 209, 217, 249, 265, 
281). We used a similar method to set estimation intervals for other crops in the three experiments. 

Figure 10. ET of five main crops during the growing season. (a), (b), and (c) refer to the three
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Table 4. The average ETs of five main crops.

Crop Type
Average ETs (mm)

a b c a-b a-c c-b

Wheat 736.63 634.57 660.18 102.06 76.45 25.61
Corn 668.18 645.53 641.43 22.65 26.75 −4.10

Cotton 725.18 638.52 690.61 86.66 34.57 52.09
Chili 800.33 753.29 755.08 47.04 45.25 1.79
Pear 956.37 891.00 943.81 65.37 12.56 52.81

4.6. Performance of the Proposed Methods for Different Acquisition Frequency of Landsat Images

Obtaining time-intensive Landsat images is often challenging for areas with high precipitation
and frequent cloud cover. To explore the impact of missing images at various stages of growth on the
accuracy of ETs estimates, the trapezoidal and sinusoidal methods proposed in this paper were used to
estimate ETs using different combinations of multitemporal Landsat images. The experimental design
is shown in Table 5.

Three sets of experiments were implemented: (1) the early stage of crop growth was excluded
(DOY: 97, 105, 113, 137); (2) the middle stage of crop growth was excluded (DOY: 153, 177, 209, 217);
and (3) the final stage of growth was excluded (DOY: 249, 265, 281, 289). We set the intersection of the
estimation interval in Section 4.4 Experiment A and the involved images in each test as the estimation
interval for each crop because the estimation interval is discrete for the trapezoidal method. Taking
the wheat in Test 1 as an example, the discrete estimation interval (DOY) of wheat in Section 4.4
Experiment A is (97, 105, 113, 137, 153, 177, 209, 217, 249, 265, 281), images involved in Test 1 are
(DOY: 153, 177, 209, 217, 249, 265, 281), and the intersection of the two datasets is (DOY: 153, 177, 209,
217, 249, 265, 281). Then, we set the estimation interval of wheat as (DOY: 153, 177, 209, 217, 249, 265,
281). We used a similar method to set estimation intervals for other crops in the three experiments.
The estimation interval is continuous for the sinusoidal method, and the setting of the integration
interval was the same as that in Section 4.4 Experiment C. Figure 11a shows the distributions of ETs for
the three experiments, while the frequency distributions are presented in Figure 11b.
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Table 5. The design table of three comparative experiments.

Test
Acquisition Date of Landsat Images (DOY)

97 105 113 137 153 177 209 217 249 265 281 289 305

1
√ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √

3
√ √ √ √ √ √ √ √ √

Note:
√

refers to images that need to be involved in the estimation.
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The tests with excluded images showed lower ETs results compared with the estimates using all
13 Landsat images (see Figure 8a) using the trapezoidal method, whereas higher ETs results were found
using the sinusoidal method compared with the estimates using all 13 Landsat images (see Figure 8c).
Results showed that the frequency of ETs estimated using 9 Landsat images had a significant difference
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from the frequency using 13 Landsat images (Figure 9) for the trapezoidal method. The frequency
of estimated ETs, however, was similar for the sinusoidal method when using either 13 or 9 Landsat
images covering the early stage (Test 1) and final stage (Test 3) of crop growth period. This indicates
that the sinusoidal method performed better than the trapezoidal method when using Landsat images
with low temporal resolution. Moreover, in Test 2 using the sinusoidal method, the ETs of wheat,
corn, and chili were higher, as indicated by vast areas of land shown in orange and red (Figure 11a).
This suggests that the effect of missing images at the middle stage of crop growth on ETs estimation is
more significant than that of missing images at the early or final stages.

5. Discussion

In this study, we investigated the estimation of seasonal evapotranspiration for crops in the arid
region using multisource remote sensing images. We applied the SEBAL model to estimate the ETd

and proposed a trapezoidal method and a sinusoidal method to estimate evapotranspiration of crops
during the growing season. We found that the estimation results from the SEBAL model using Landsat
images can reasonably reflect the ETd of cotton in the study area. We also learned that the sinusoidal
method performed better than the trapezoidal method when using Landsat images with low temporal
resolution. When we tried excluding images in the analysis, we found that the omission of images
during the middle stage of crop growth has the greatest impact on the estimation results of ETs using
the sinusoidal method. Based on these results, we found that the sinusoidal method integrated with
multisource remote sensing images offers a useful tool to estimate ETs with a spatial resolution of 30 m.

The change of ETd is related to the stages of growth and phenology of the crops (see Figure 6).
In the initial stage of growth, while the crops grow fast, the ETd steadily increases. In the middle stage,
when the crops reach their maximum growth, the ETd reaches its peak. In the late stage, the crops
mature and are harvested, resulting in the decrease of ETd values. Estimated ET values of cotton
derived from the SEBAL model were close to the actual ET values obtained using the Penman–Monteith
model (see Table 2). This means that the results derived from the SEBAL model were able to properly
estimate the ETd of cotton in the agricultural lands of the Kai-Kong River Basin. However, this study
validated the accuracy of the ETd that is only based on one crop due to the lack of Kc data for other
crops. Future research can be conducted to further assess the estimation accuracy of the SEBAL
model by using the crops coefficients for other crops. In addition, we used the Gapfill extension
tool implemented in the ENVI software to deal with the stripping errors of Landsat 7 ETM+ images.
Nevertheless, some error pixels still exist in the strips. Since these pixels only account for a small
portion (i.e., less than 10%) of the total image pixels, the estimated ETd and ETs might be influenced
only slightly by stripping errors.

The actual ETd is generally difficult to measure due to the high spatial and temporal variability.
During the crop growing season, obtaining field measurements of evapotranspiration is often highly
problematic. In the absence of actual measurements, previous studies validated their ETd estimates
by comparing them with the data provided in the literature [72]. Similarly, we also used the results
from related studies to verify the accuracy of our ETs estimates, due to the lack of actual field data.
Previous studies showed that the average annual water requirement for cotton was 679.00 mm in
the Tarim River Basin in Xinjiang from 1989 to 2010, and the average annual effective rainfall was
63.00 mm [73]. Thus, the average annual evapotranspiration for cotton is about 743.00 mm in the Tarim
River Basin, which is composed of nine river systems, including the Kai-Kong River Basin. The average
annual water requirement for cotton in the Kai-Kong River Basin ranges from 555.70 to 810.20 mm
from 1963 to 2012 in another research [74], where the average annual evapotranspiration was about
618.70–873.20 mm. The estimated ETs of cotton were 725.18, 638.52, and 690.61 mm all within the
range, indicating that the estimated results are reasonable. Future work can be conducted to further
evaluate the accuracy of the proposed methods using actual measurements from lysimeters.

In this paper, we used 13 Landsat images to estimate ETs, and we achieved good results via both
the trapezoidal and sinusoidal methods. To evaluate the performance of the proposed methods for the
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different acquisition frequencies of the Landsat images, we designed three sets of experiments that
excluded images in the early stage, the middle stage, and the final stage of crop growth. The results
indicate that the trapezoidal method is suitable when using Landsat images with high temporal
resolution, while the sinusoidal method is suitable when using Landsat images with low temporal
resolution. Furthermore, the middle stage of crop growth is an important integral component of ET
estimation for the sinusoidal method. When obtaining time-intensive Landsat images is difficult,
the sinusoidal method can still be used to estimate ETs even with the absence of some images in the
early or final stages of the crop growing season. The sinusoidal method, integrated with multisource
remote sensing images, offers a useful tool to estimate ETs with a spatial resolution of 30 m for crops
in the study area. Moreover, we used the sine function to fit the time-series ET data, extracted from
MOD16A2 images, mainly inspired by the method of extending ETinst to ETd estimates in this paper.
In future endeavors, we will apply the polynomial function and other functional forms to the time-series
ET data, and we will compare the fitting accuracy of the sine function.

Compared with other methods for estimating ETs, the main advantage of the proposed sinusoidal
method is that it estimates ETs for crops using remote sensing images only covering the crop growth
period within one year. In this paper, we applied the sinusoidal method to estimate the ETs in the
arid region of the agricultural land of the Kai-Kong River Basin in Xinjiang. This method also has the
potential to be applied in semiarid or temperate regions. The ETd derived from the SEBAL serves as
an input for the estimation of ETs by the sinusoidal method. Since the SEBAL has been widely used
in arid and semiarid regions, as well as temperate regions [75], we believe that the sinusoidal model
can also be used to estimate ETs in semiarid and temperate regions based on the multitemporal ETd

images derived from the SEBAL model and time-series of MOD16A2 images. Nonetheless, future
research can be conducted to further test the applicability of the sinusoidal method in these regions.
In addition, the spatial resolution of the ETs obtained for crops depends on the resolution of the input of
multitemporal ETd images, i.e., 30 m resolution in this paper. Theoretically, the proposed method can
also be used to obtain ETs with different resolutions when using ETd images with different resolutions,
leading to our future work.

6. Conclusions

This study investigated the estimation of seasonal evapotranspiration for crops in an arid region
using multisource remote sensing images. We applied the SEBAL model to estimate the ETd in the
agricultural lands of the Kai-Kong River Basin, Xinjiang, China. We proposed a trapezoidal and a
sinusoidal method to upscale ETd values to ETs. Based on the results of the study, we conclude the
following:

(1) The SEBAL model is effective in estimating the ETd of cotton using Landsat images in the
agricultural lands of the Kai-Kong River Basin, Xinjiang, China.

(2) Compared with the trapezoidal method, the sinusoidal method can obtain more accurate ETs

when using Landsat images with low temporal resolution.
(3) The sinusoidal method integrated with multisource remote sensing images offers a useful tool to

estimate ETs with a spatial resolution of 30 m for crops in the arid area.
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