
The Complexity of Late-Binding in Dynamic
Object-Oriented Languages*

Enrico Pontelli, Desh Ranjan, Gopal Gupta

Laboratory for Logic, Databases, and Advanced Programming
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003 USA

e-mail: {eponte l l , dranj an, gupta}@cs, nmsu. edu

Abstrac t . We study the algorithmic complexity of supporting late bind-
ing in dynamic object-oriented programming (OOP) languages--i.e., lan-
guages that allow creation of new class definitions at runtime. We propose
an abstraction of the late-binding problem for dynamic OOP languages
in terms of operations on dynamic trees, and develop a lower bound of
~(lg n) per operation (where n is the number of nodes in the tree). This
result shows that efficient solutions (i.e., solutions that incur a constant
time overhead per operation) of this problem are, in general, not possi-
ble. We also propose new data-structures and algorithms for solving the
late-binding problem for dynamic OOP languages very efficiently, with
a worst-case time complexity of O(r per operation. This result is an
improvement over most existing approaches.

1 Introduction

We study the the algorithmic complexity of implementation mechanisms for
supporting inheritance in dynamic object-oriented languages. The aim of this
study is to model these implementation mechanisms in terms of operations on
dynamic data structures, with the final goal of determining their complexity.
Our complexity study is used to derive novel data structures for implementing
inheritance mechanisms efficiently. In this work we limit ourselves to studying the
complexity of implementing late-binding inheritance in dynamic OOP systems,
with particular focus on prototype-based languages. The inheritance considered
is single inheritance, or multiple inheritance with linearization. Generalization of
this work to more complex domains (tree and graph-based multiple inheritance)
is still under investigation.

Inheritance refers to the property of OOP languages whereby new classes are
defined by specializing existing classes. When a class D is defined as a subclass
of another class B (sub-typing), it inherits all the attributes (both data and op-
erations) from class B. Late binding means that procedure-call name-resolution,

* This work has been partially supported by NSF grants HRD 93-53271, INT 95-15256,
and CCR 96-25358, and by NATO Grant CRG 921318.

214

i.e., mapping of a procedure call to a procedure definition, is done at run-time,
rather than compile-time. This is because due to sub-typing and inheritance, it
is not immediately clear which definition should be used corresponding to a pro-
cedure call, as procedure definitions may be multiply defined in a class hierarchy.
Late-binding is an essential feature of OOP and is present in most languages,
e.g., Java, CLOS, Smalltalk, C++ (virtuM functions), etc.

Dynamic OOP languages are languages that allow dynamic runtime creation of
class definitions. Thus the complete class hierarchies are not known at compile-
time. CLOS [17] and Smalltalk are two such languages. Additionally, prototype
based languages [2, 4, 29] are also examples of such languages. Name-resolution
in presence of late-binding is easily solved for static OOP languages (such as
Java and C++) since the complete class hierarchy is known at compile-time;
for dynamic languages, due to absence of this information, it is not as easy. To
study the complexity of the problems that arise in implementing name-resolution
in late-binding dynamic OOP languages, we first abstract it and formalize it in
terms of operations on dynamic trees (i.e., trees that grow and shrink with time).
This formalization permits us to abstractly study the implementation problems.

The abstraction of the computing machine that we choose is the Pointer Ma-
chine [18,19, 27]. The reason we choose a pointer machine is because it provides
operations needed for expressing computations over dynamic data structures;
it also Mlows us to perform a finer level of analysis compared to other models
(e.g., RAM). Besides, use of pointer machines enables us to use many existing
results [22, 12, 14, 21] which are useful in our study and have been developed on
pointer machines. Analysis of the name-resolution problem in late-binding dy-
namic language on pointer machines gives us a deep insight into the sources of
its implementation complexity.

Based on our rigorous study, we develop a lower bound time complexity of
12(lg n) per operation (where n is the number of nodes in the tree), for the
name-resolution problem in late-binding dynamic OOP languages. This lower
bound implies that the implementation of name-resolution (creation, mainte-
nance, member look-up, etc. of a class hierarchy) in late-binding dynamic OOP
languages will at least incur cost proportional to lg n, where n is the number of
classes in a hierarchy. In particular, this means that all the operations needed to
support dynamic look-up in a class hierarchy cannot be made constant-time.

We Mso propose efficient new data-structures and Mgorithms for solving this
problem which have a worst-case time complexity of o(,fn-) per operation. This
result is an improvement over existing approaches that typically have a com-
plexity of ~2(n) per operation. The data structures are very practical and can be
easily employed in actual implementations.

The abstraction of the name-resolution problem for dynamic OOP languages
in terms of dynamic trees, the derivation of a lower bound on complexity of name-
resolution, and the development of an efficient, new implementation technique
for it, are the main contributions of this paper. To the best of our knowledge, this
is the first rigorous study of implementation of name-resolution in late-binding
dynamic object-oriented languages. Our study is inspired by our observation that

